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Abstract

This work focuses on quantifying iron overload in the liver from magnetic resonance images. Measuring

the amount of iron in the body is essential for the treatment of patients suffering from thalassemias, a

class of widespread genetic diseases compromising the production of red blood cells. Without frequent blood

transfusions, many of these patients do not reach the age of five. In turn, transfusions may lead to toxic

accumulations of iron, potentially inducing severe health complications such as cardiac failure. In order to

prevent this, it is critical to remove the excess iron in the body. At present, the only effective method is to

use medications able to bind iron and assist in its excretion. However, it is necessary to tailor the length and

intensity of this therapy to the specific patient, hence clinicians need to know the amount of surplus iron

to remove. To approach this problem, computational models have been developed and applied on magnetic

resonance images to estimate liver iron overload, which has been shown to closely relate to the total body

iron content. In this study, we contribute to the field with an in-depth analysis of one of these methods,

obtaining promising estimation results.
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Background

At the heart of a successful application of computational models

to medical problems is an intuitive understanding of the underlying

biology. This section is our attempt to convey the basic concepts to the

reader, gradually introducing the techniques we can use to accurately

quantify liver iron overload in order to correctly inform treatment.

Thalassemias

Haemoglobin is a protein located in red blood cells, primarily

responsible for the transportation of oxygen from the lungs to the

tissues [45]. This important role is made possible by its structure

comprising four globin chains (proteins), each containing an ion of

iron (Fe2+) to which oxygen can bind. Alterations in the production

of these microscopic molecules may have a giant impact on the

host organism. One example of such alterations is represented by

thalassemias, genetic disorders resulting from a decreased or absent

synthesis of a globin chain [28]. Globin chain imbalances compromise

the production of healthy red blood cells, resulting in chronic anemia.

This persistent deficiency is the primary reason why patients with

severe thalassemia depend on regular and lifelong blood transfusions

to survive. Thalassemias pose a major public health challenge,

representing one of the most common genetic diseases and affecting

nearly 68,000 newborns each year [29]. Symptoms range from fatigue

and weakness to life-threatening complications such as cardiac failure

[29]. In the absence of transfusions, approximately 85% of patients with

severe thalassemia do not survive beyond the age of five [38]. On the

other hand, transfusions often cause an excessive accumulation of iron,

for which the human body lacks physiological excretion mechanisms

[43]. Elevated concentrations of iron are toxic, and potential outcomes

include heart failure, cirrhosis, diabetes mellitus, infertility, and

neurodegenerative diseases [10, 40]. Today, the average life expectancy

of patients with severe thalassemia remains around 17 years, with

cardiac complications from iron overload being the leading cause of

death [28]. A therapy known as iron chelation uses medications able to

bind the extra iron so that it can be removed from the body, preventing

damages to the organs. Iron chelation is currently the only method

proven effective in extending patients’ survival [38, 40].

Liver, the body’s iron warehouse

The current need for treatments such as chelation therapy is rooted in

evolutionary history. Around two billion years ago, Earth experienced

a period known as the Great Oxygenation Event, characterized by the

accumulation of free oxygen (O2) in the atmosphere [10, 34]. This rise

in oxygen led to the oxidation of iron into a less soluble and potentially

toxic ion (Fe3+), which remains present in biological systems and

continues to drive the need for strategies to control its accumulation,

such as the one proposed in this work. In response to this environmental

shift, organisms evolved proteins to safely store, transport, and regulate

iron. In humans, the liver is an exemplary result of this evolutionary

adaptation. Containing around 20% to 30% of the body’s total iron, it

serves essential functions of storage and detoxification [10, 44]. While

these functions are insufficient to handle the excess iron introduced

by frequent transfusions, a significant portion of the surplus iron still

accumulates in the liver. In particular, liver iron concentration (LIC)

has been shown to correlate reliably with total body iron stores [3, 39].

As a result, this organ remains a valuable source of information for

the assessment and planning of chelation therapy. Indeed, in order
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The Problem

Fig. 1: Thalassemias compromise the formation of red blood cells, with potentially fatal outcomes. Consequently, often patients depend on

regular blood transfusions. Nonetheless, these can lead to the accumulation of a toxic amount of iron in the body, posing new critical challenges

to the patient’s health. Hence, excess iron must be removed. Image adjusted from [19, 32].

to effectively remove the accumulated iron from the body, clinicians

must first determine how much excess iron is present, and LIC can be

considered a useful marker for this purpose. Once the amount of surplus

iron is known, the intensity and duration of chelation therapy can be

adjusted accordingly. This targeted approach is essential, as chelation

therapy is both expensive and associated with potential side effects.

The core objective of the computational methods used in this study

(and several others) is precisely that of accurately quantifying liver

iron overload to correctly initiate, monitor, and tailor treatment [39].

Traditionally, liver biopsy has represented the gold standard procedure

for this assessment [11]. Nonetheless, biopsy is invasive, expensive, and

potentially leading to complications [42]. For these reasons, methods

based on magnetic resonance imaging (MRI) have emerged as an

effective non-invasive alternative for estimating the iron accumulation

[49].

T2∗-weighted MRI

In simplistic terms, MRI techniques use a scanner that, by means of

magnetic fields, can encode the value of a signal which decays in time.

Depending on the particular technique, the decaying time is influenced

by specific variables. For example, T2-weighted MRI is especially

affected by a tissue property known as relaxation time, corrected

for imperfections in the scanner. These corrections, while useful in

some application (e.g. cancer detection), can suppress effects that are

attributable to the presence of iron. Therefore, when considering the

problem of iron overload, such corrections are generally not applied,

and the resulting technique is called T2∗-weighted MRI. This method

allows for an accurate description of LIC and is therefore an useful

resource for the early detection of iron overload. Moreover, without

applying the corrections, the signal decays faster, so that the scan can

be taken in a single patient breath hold. Simple and fast measurements

are important not only for a correct initiation of chelation therapy,

but also for a regular monitoring of its progresses. These advantages

have allowed T2∗-weighted MRI to receive the largest consensus as

the favoured imaging technique for assessing iron overload [39]. In

terms of computational modelling, T2∗ represents the time constant of

signal decay and is generally the parameter to be estimated. Indeed,

the signal decays faster for higher LIC, meaning that smaller T2∗

(measured in ms) indicates higher iron content. For simplicity, we will

often consider the reciprocal of T2∗, denoted R2∗(measured in 1/s),

since it is larger for higher iron concentration. The numerous studies

that have considered T2∗-MRI for the quantification of iron overload

represent one more demonstration of its importance in the field.

Related work

To orient ourselves within the current research landscape, we now

examine its major milestones. Many studies have assessed R2∗-based

techniques against liver iron concentration (LIC) from biopsy samples

[12, 17, 31]. In the study by Wood et al. [48] 22 patients underwent both

MRI scanning and liver biopsy. The aim was defining a mathematical

relationship (known as calibration) that allows estimating LIC from

measured R2∗ values. They accomplished this by fitting a constant-

offset exponential model (C-EXP), demonstrating strong correlation

between R2∗ and LIC, though the results were limited by sample size.

Hankins et al. [15] extended this with 43 patients, using a truncated

exponential model [16], and found excellent agreement with Wood’s

calibration curve. They also reported high interobserver reproducibility

(ICC = 0.98), highlighting the robustness of T2∗-weighted MRI.

Christoforidis et al. [8] analysed one of the largest cohorts (94

thalassemia patients), confirming R2∗’s reliability over other imaging

methods. Several studies obtained similar results [2, 13, 17, 18], all

using single exponential models (with or without offset or truncation),

typically fitted with the Levenberg–Marquardt (LM) method [24, 26],

which appears to be the most widely used in the literature. Despite

broad adoption of computational methods for T2∗-weighted MRI, there

is no consensus on the optimal image analysis pipeline. Variability

exists in the choice of model, fitting algorithm, ROI selection, and

whether fitting is performed pixel-wise or on average ROI signals.

Addressing this, Positano et al. [37] compared SEXP, C-EXP, and

BiEXP models using synthetic ground truths, but no single model

was found to consistently outperform the others. Their study also

highlighted the impact of ROI variability [2, 25, 33, 37, 47, 49], an

aspect that can heavily influence the estimates. A global pixel-wise

approach across the whole liver was proposed and shown to alleviate

the problem. Ibrahim et al. [22] similarly support pixel-level analysis

as reliable when using single-exponential models. In 2023, Eldaly et

al. [11] extended this work by proposing a standardised method for
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Signal as a function of time to echo

Fig. 2: This idealised picture illustrates the typical signal decay as a function of time to echo. The curve assumes a shape resembling an

exponential decay. Moreover, the decay is faster for smaller T2∗. As faster decay means more iron, smaller T2∗ values suggest a more severe

iron overload. Image obtained from [23].

R2∗ estimation. They employed exponential models fitted pixel-by-

pixel and optimised via the alternating direction method of multipliers

(ADMM). This strategy was also applied by Huang et al. [20] for

similar purposes, and in both cases the results demonstrated superior

performance compared to traditional techniques. In 2024, Huang et

al. [21] proposed a further alternative for model fitting, based on

a Bayesian approach. The main limitation of all these techniques

remains their significant computational cost. Nonetheless, compared

to traditional methods, they are typically less sensitive to noise

and therefore tend to produce better estimates [21]. A particularly

innovative direction was explored by Positano et al. [36], who developed

a deep learning model for the unsupervised classification of LIC.

Three different convolutional neural networks (CNNs) architectures

were trained on augmented MRI images, and the predicted LIC

values were compared against synthetic ground truth data. Their

best model achieved accuracy comparable to that of expert reviewers

and generalised well to an external dataset acquired on different

scanners. Given its performance, this method may contribute to

improve consistency and efficiency in clinical procedures, potentially

supporting radiologists in their decisions.

Having established a solid overview of the field, we are now in a position

to identify how to contribute to it.

Research gap

Fitting methods that include regularisation terms, such as ADMM,

typically are more computational intensive than simpler techniques.

Nonetheless, they have shown promising results, demonstrating good

robustness against noise. Yet, the number of studies examining these

methods for applications to LIC estimation from T2∗-MRI images

remains reduced. Also because of this, the field currently lacks

general consensus on how to approach this problem. Several steps

of the necessary pipeline remain subject to arbitrary choices, and a

standardisation could guarantee a major ease in the use, comparison,

and interpretability of the results, both for researches and for medical

practitioners. With the aim of filling this research gap, we continue

on the path indicated by Eldaly et al. [11], exploring in depth the

possibility of performing LIC estimation by means of ADMM fitting.

Contributions

In this study, we approach the problem of quantifying iron overload

in thalassemia patients using T2∗-weighted MRI. The contributions of

this paper are four-fold:

• We focus on the estimation of R2∗, which can be used as a proxy

for the amount of iron in the liver;

• We formulate the estimation task as an optimisation problem and

we carefully outline the steps prescribed by the ADMM, the fitting

method to be employed;

• We run experiments on synthetic and real images, offering a needed

analysis of the ADMM-based approach;

• We repeat the experiments using LM, presenting a useful

comparison between alternative methods.

Methodology

In this section, we propose a systematic method to obtain T2∗

estimations by performing curve fitting on the signal of magnetic

resonance images. Obtaining an estimate of T2∗ allows us to have

a proxy measure for LIC, which in turn is a reliable indicator of total

body iron content. However, in the presence of noise and vasculature,

this estimation becomes difficult. In order to approach this task, the

very first step involves the choice of an appropriate relation between

the measured signal and the T2∗. This decision corresponds to the

definition of the model we want to use to obtain a signal value given

T2∗ as input parameter. Then, we can define a loss function to compare

the reconstructed signal with the actual measurement. Our estimated

T2∗ will be the one leading to the minimal loss value.

Model

Figure 2 illustrates curves which are akin to the evolution of signal

values as TE increases. In particular, the signal appears to show an

exponential decay, which becomes faster for lower T2∗ values. More

intuitively, the decay rate increases as R2∗ grows. In order to define this

relation with an explicit model, we now present the needed notation.

At each of the M echo times used, an MRI scan provides an image



4 Andrea Brigliadori

of generic shape K by L. Consequently, the final result is an image

tensor of shape K by L by M , with N = K × L voxels containing

M measurement each. We denote this signal tensor by S ∈ RK×L×M

and we write sn = {s1, s2, . . . , sM} for the signal at each voxel n.

Moreover, rn will represent the corresponding scalar R2∗ value. Finally,

for simplicity, we denote by t ∈ RM the vector of TEs. With these

ingredients at hand, an intuitive model definition could be:

sn = ane
−rnt. (1)

Here, an is an additional scalar parameter (the ”intercept”) useful to

avoid imposing that sn = 1 at TE = 0 ms. This intuitive model is the

one considered for conducting the experiments described in this paper.

Optimisation problem

Chosen the model, the next step is defining a loss function that, given

a model output and the true signal, quantifies the distance between

the two. This is a useful proxy for the distance between the estimated

T2∗ and its ground truth, which is our true objective but is assumed

to be unknown. Moreover, while T2∗ is our parameter of interest,

we underscore that we will also need to estimate the intercept. It is

customary and convenient to employ, as a loss function, the sum of

squared differences between the true signal and the model’s output.

In addition, to introduce global information and increase robustness to

noise, we include regularisation terms for both parameters. Specifically,

we use Total Variation, often considered the regularisation of favour

in signal processing for its ability to discard excessive details caused

by noise. More explicitly, we consider the following unconstrained

minimisation problem:

min
a,r

1

2

N∑
i=1

∥si − aie
−rit∥22 + λ1∥a||TV + λ2∥r∥TV . (2)

Despite its convexity, this optimisation problem cannot be solved with

gradient-based methods. In particular, a complication is represented

by the dependence of both the sum of squared errors and the Total

Variation terms on the parameters. On the other hand, this problem

fits naturally into a class of objectives commonly addressed by the

alternating direction method of multipliers (ADMM). The first step

prescribed by ADMM is known as variable splitting. This involves

introducing new variables (the ”splitting parameters”, denoted g and

f) to replace the parameters appearing in the regularisation terms.

Then, equality constraints are imposed between these variables and

the parameters they replace, so that the obtained problem remains

equivalent to the original one. After this process, we can rewrite the

objective as follows:

min
a,r,g,f

1

2

N∑
i=1

∥∥si − aie
−rit

∥∥2

2
+ λ1∥g∥TV + λ2∥f∥TV

subject to

g = a,

f = r.

(3)

Subsequently, we can consider the corresponding augmented

Lagrangian:

L(a, r,g, f ,d1,d2) =
1

2

N∑
i=1

∥∥si − aie
−rit

∥∥2

2

+ λ1∥g∥TV + λ2∥f∥TV

+
µ

2
∥a− g − d1∥22 +

µ

2
∥r− f − d2∥22 , (4)

where d1 and d2 are the Lagrange multipliers and µ > 0 is a constant.

Given one such objective, the ADMM searches for the solution value

of each parameter individually and iteratively.

Solving for a

In order to solve for any an, we can simply focus on La(a, r,g,d1),

the portion of the Lagrangian that only includes terms depending on

the parameter of interest:

La(a, r,g,d1) :=
1

2

N∑
i=1

∥∥si − aie
−rit

∥∥2

2
+

µ

2
∥a− g − d1∥22 (5)

The solution can then be found computing the partial derivative with

respect to an and setting it to zero:

∂L
∂an

= 0,

−
(
e−rnt

)T
(sn − ane

−rnt) + µ(an − gn − d1n) = 0,

−
(
e−rnt

)T
sn + an

(
e−rnt

)T
e−rnt + µan = µ(gn + d1n),

an

[(
e−rnt

)T
e−rnt + µ

]
=

(
e−rnt

)T
sn + µ(gn + d1n),

an =

(
e−rnt

)T
sn + µ(gn + d1n)

(e−rnt)T e−rnt + µ
.

(6)

Solving for r

Proceeding as before, we can define the objective to solve for any rn
as follows:

Lr(a, r, f ,d2) :=
1

2

N∑
i=1

∥∥si − aie
−rit

∥∥2

2
+

µ

2
∥r− f − d2∥22 (7)

In this case, we need to approach the minimisation of the expression

using a number K (arbitrarily chosen) of gradient descent steps.

Therefore, we need to compute the partial derivative of Lr with respect

to rn:

∂Lr

∂rn
=

(
ant⊙ e−rnt

)T (
sn − ane

−rnt
)
+ µ (rn − fn − d2n) , (8)

where ⊙ stands for the component-wise (Hadamard) product. Having

found the partial derivative, at each step k of gradient descent we

implement the update rule:

r(k+1)
n = r(k)

n − η
∂Lr

∂rn
, (9)

where η is known as learning rate and controls the size of the updates.
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Solving for g

On the same lines of the previous steps, we here consider the terms of

the Lagrangian that only depend on g:

Lg(a,g,d1) := λ1∥g∥TV +
µ

2
∥a− g − d1∥22. (10)

The solution to this problem is calculated using the Chambolle

algorithm [7]:

g = Chambolle

(
a− d1,

λ1

µ

)
. (11)

Solving for f

Finally, we can concentrate on f and define:

Lf (r, f ,d2) := λ2∥f∥TV +
µ

2
∥r− f − d2∥22, (12)

an expression that can be treated using again the Chambolle

algorithm:

f = Chambolle

(
r− d2,

λ2

µ

)
. (13)

The following is a summary of the algorithmic procedure:

Algorithm 1 Iron overload estimation using ADMM.

1: set k = 0, choose a(0), r(0),g(0), f (0),d1
(0),d2

(0), and µ > 0

2: repeat

3: k ← k + 1

4: a(k+1) ← argmina L(a, r(k),g(k), f (k),d1
(k),d2

(k))

5: r(k+1) ← argminr L(a(k+1), r,g(k), f (k),d1
(k),d2

(k))

6: g(k+1) ← argming L(a(k+1), r(k+1),g, f (k),d1
(k),d2

(k))

7: f (k+1) ← argminf L(a(k+1), r(k+1),g(k+1), f ,d1
(k),d2

(k))

8: d1
(k+1) ← d1

(k) −
(
g(k+1) − a(k+1)

)
9: d2

(k+1) ← d2
(k) −

(
f (k+1) − r(k+1)

)
10: until some stopping criterion is satisfied

Now that we have defined a model and a precise method to obtain

parameter estimates, it remains to assess the quality of our approach.

This can be done by first running experiments on synthetic data with

known ground truth and then testing on real patient images.

Experiments

Phantom images

Data

When running experiments, the primary aim is to understand whether

the recovered parameter estimates are reasonable. Ideally, we would like

to compare our results with a ground truth. This motivates our decision

to begin our experiments by generating phantom images, since the

parameter values we arbitrarily select to produce such images can be

used as ground truth. Precisely, we decide to create 4 image tensors of

size 32×32×12. Each of the 12 channels corresponds to one entry of the

TE vector t = [2.58, 4.81, 7.59, 9.89, 12.12, 14.35, 16.58, 18.88]T .

Moreover, we impose that for each image the parameter values are

constant across voxels. Consequently, in each image the signal varies

only for different time to echos, hence across different channels.

With these settings, we need to choose only four values for a

([155, 255, 355, 455]) and four for T2∗ ([5, 10, 15, 20]). Then, given

one of the four parameter pairs as input, the model will output a signal

vector of the same length as t, hence with one value per channel. As

signal values are constant for pixels in the same channel, this vector is

enough to reconstruct the entire image (Figure 3).

Table 1. True values and mean estimates of the parameters as obtained by

ADMM on phantom images. For every parameter, the colour intensity of a cell

is proportional to the amount of the total absolute error that was caused by the

corresponding estimate.

Image 1 Image 2 Image 3 Image 4

Parameter a

True value 155 255 355 455

Estimated value 154.8006 254.9949 355.0071 455.0027

Parameter T2∗

True value 5 10 15 20

Estimated value 5.0113 10.0004 14.9993 19.9997

Estimations

Obtained the image tensors, we can run our algorithm as explained

before in order to recover the parameter estimates. Then, comparison

with ground truth values can be performed visually as depicted in

Figures 4 and 6. Moreover, it is possible to quantitatively compare

the estimates with the ground truth. Throughout the experiments,

the distance of the estimates from the values of reference will be

measured in terms of absolute error. Table 1 confirms a high similarity

between ground truth values and mean estimates for both parameters.

Subsequently, we repeated this procedure adding Gaussian noise (mean

0, variance 10) to observe how it can affect the results. The estimates

appear indeed less precise, but taking the average seems to be enough

to mitigate the effect of noise and recover values that are close to the

ground truths (Figures 5, 7, and in the Appendix Figures 18, 19).

As mentioned before, in our optimisation we used Total Variation

terms to neglect unwanted details of the images. This effect can be

verified by comparing the figures we obtain if we increase λ1 and λ2,

the coefficients weighting the regularisation terms (Figure 20 in the

Appendix)

These analyses were useful to assess the suitability of our method with

a simple strategy, before progressing on real images.

Real images

Data

Real images do not equip us with ground truth parameter values. On

the other hand, patient images provide an important opportunity to

conduct more realistic experiments. In-vivo abdominal MRI scans were

performed on four human subjects with sickle cell disease 1 (mean age:

38 ± 12 years) using a 3T Siemens Skyra scanner (Siemens Healthcare,

Erlangen, Germany). Imaging was conducted with a body surface coil

and an 8-echo gradient echo (GRE) sequence, with echo times evenly

spaced between 2.58 ms and 18.88 ms. Imaging parameters included:

repetition time = 5200 ms, matrix size = 192 × 256, bandwidth =

1776 Hz/pixel, flip angle = 20°, slice thickness = 10 mm, and field of

view (FOV) adjusted to patient size. A single axial slice through the

1 While the biological background presented focuses on thalassemia
due to its clinical relevance in transfusion-induced iron overload, the

dataset used in this work consists of T2∗-weighted MRI scans from

patients with sickle cell disease, who are also subject to similar iron-
related complications. The imaging methodology remains applicable to

both conditions.
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Phantom Results Overview

Fig. 3: Each panel shows the signal at one TE across four phantom images. For example, the top-left square of the first panel displays the

first channel of the first image. As the time to echo grows, panels become darker due to signal decay (decay curves are reported in Figure 17,

Appendix). The bottom-right square in each panel corresponds to the image with the highest T2*, becoming darker at the slowest rate.

Fig. 4: Results for a (no noise). From left to right: ground truth,

signal at first TE, estimated a (closely resembling the ground

truth), and mean of estimated a.

Fig. 5: Results for a with noise. Averaging reduces noise impact,

yielding estimates close to ground truth. This effect is even more

evident for more intense noise (Figure 18).

Fig. 6: Results for T2∗ (no noise). Similar layout to a. Also in

this case, we can observe that the estimates are close to the

ground truth.

Fig. 7: T2∗ estimates with added noise. Averaging mitigates the

noise effect. This effect is even more evident for more intense

noise (Figure 19).

mid-liver was acquired during end-expiration breath hold.

Figure 8 displays all the T2∗-weighted images obtained from the study

participants, highlighting the signal decay in the liver with increasing

TE. Due to variability in hepatic iron distribution, susceptibility

artifacts, and vascular inclusion, T2∗ values can vary across different

liver regions. As part of this study, liver biopsies were not obtained, as

they were not part of standard clinical care. T2∗ values were instead

computed using the scanner’s built-in T2∗ mapping software, which

employs a single exponential fitting model. Circular regions of interest

(ROIs) approximately 4 cm in diameter were placed in the center of

the vials’ cross-sections and within the right hepatic lobe, avoiding

vascular structures.

Estimations

Running the algorithm on these images yields the parameter estimates

visualised in Figures 9 and 10. Interestingly, the T2∗ values for the

second patient are particularly low, resulting in a dark image and

suggesting high iron concentration. Combining these observations with

the intuitions we gained from Figure 2, we expect that the signal decay

over time to echos is especially fast for this patient. To quantitatively

verify this, we focus on an ROI in the lower part of the livers’ right lobe,

and we compute the mean signal across TEs. Figure 12 confirms our

expectations, highlighting for the second patient a decay curve that

instersects the one for the third patient despite starting at a higher

value. Clearly, the results are influenced by the particular ROI chosen.

With the aim of illustrating this, we compute T2∗ values for three

more ROIs (Figure 24) per patient, and compare all the estimates with

the results obtained by the scanner’s software. As expected, Table 2

describes significant fluctuations in the results between different ROIs.

For example, the ”left” ROI often seems to cause the highest error.

Table 2. Comparison of mean estimated T2∗ and scanner results at different

ROIs. The intensity of the red colour of a cell is proportional to the amount of

the total absolute error caused by the estimate in that cell.

Patient 1 Patient 2 Patient 3 Patient 4

Scanner

result

9.1323 4.2624 16.2949 10.7012

Right ROI 10.4905 3.8968 16.3604 10.9868

Vasc ROI 10.8184 5.2993 16.9020 10.9755

Edge ROI 8.1741 4.9750 17.1849 9.9705

Left ROI 11.0596 4.6903 14.1894 18.1106
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Real images for the four patients at different TEs

TE=2.58 TE=4.81 TE=7.59 TE=9.89 TE=12.12 TE=14.35 TE=16.58 TE=18.88

Fig. 8: All the real images considered. Each row corresponds to a patient. Each column corresponds to a different TE. The second patient

(second row) seems to be the one for which the signal decays faster. This may suggest that this patient has a severe iron overload.

Maps of estimates of T2∗ for the four patients

Fig. 9: Parameter T2∗ for the four patients. In particular, for the second patient the estimated T2∗ assumes the lowest values, indicating the

highest iron concentration. The main hyperparameters were used with default values λ1 = 1e-5, λ2 = 1e-5, η = 1e-8. Different constants for

regularisation were tested in Figure 21 and Table 4.

Maps of estimates of a for the four patients

Fig. 10: Parameter a for the four patients. The highest intercept appears to be the

one for patient 1.

Patient 1: example of ROI

Fig. 11: Illustration of the ”right” ROI for

patient 1.
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ROI Mean Signal Decay as a Function of TE

Fig. 12: The figure illustrates the mean signal decay curves for the four patients. The red line refers to the second patient and shows a fast

decay. This is particularly evident in comparison with the third patient (in green). Indeed, the red line starts higher but intersects the green

line.

Using Levenberg Marquardt

Finally, for comparison purposes, we repeated the experiments using

the Levenberg–Marquard method instead of ADMM. Similarly to

ADMM, Levenberg–Marquard is designed for nonlinear least squares

problems, but in its basic form it does not include regularisation

terms. Therefore, there is no explicit noise handling or encoding of

global information. Mathematically, we use it to minimise the following

simplified objective:

LLM (a, r) :=
1

2

N∑
i=1

∥∥si − aie
−rit

∥∥2

2
(14)

More precisely, LM solves this problem by interpolating between the

Gauss–Newton and gradient descent methods. In our case, for every

voxel n, it defines the parameter update rules at iteration step k as:

a(k+1)
n = a(k)

n −
(
∂2LLM

∂2an
+ η

)−1 ∂LLM

∂an
; (15)

r(k+1)
n = r(k)

n −
(
∂2LLM

∂2rn
+ η

)−1 ∂LLM

∂rn
. (16)

Here, η > 0 is the hyperparameter that controls the balance between

gradient descent and Gauss–Newton behavior. When η is large

the update resembles gradient descent, while a small η leads to a

Gauss–Newton behaviour (Table 5). Some of the results obtained with

this method find interpretations similar to those already described, and

are therefore reported in the Appendix.

The experimental results on phantom images are illustrated in Figures

22 and 23, which show similarities with what we observed for ADMM.

Nonetheless, we can observe that in the presence of high noise,

the absence of regularisation terms in LM leads to lower robustness

and flexibility compared to ADMM (Figure 13). Subsequently, we

performed the experiments on real images, obtaining the parameter

maps for the four patients (Figures 14 and 15). The insights achieved

with ADMM, especially regarding the second patient, appear to be

confirmed by the LM method. Table 3 displays the best mean estimates

achieved across the two models for the different ROIs, with blue cells

indicating that the corresponding best estimate was obtained with

ADMM. For completeness, we include all the mean estimates for LM

in Table 6. We observe how the ADMM yields the best estimate

almost twice as frequently as LM. ADMM likely owes its improved

performance to the inclusion of Total Variation terms. Indeed, these

regularisation terms help suppress noise while also capturing the spatial

correlation between neighbouring voxels. On the other hand, the total

computational time needed for obtaining the estimates for the four

patients appears reduced by LM, indicating that this algorithm may

be a good option when efficiency is a priority (Figure 16).

Comparison of highly regularised ADMM (left)

with LM (right)

Fig. 13: Estimates of T2∗ in the presence of severe noise

(σ2 = 100). ADMM used λ1 and λ2 equal to 100, offering

greater robustness to noise compared to LM.

Table 3. Best mean T2∗ estimates between ADMM and LM, compared with

the scanner result. Every cell reports the best estimate. The cell is blue if this

estimate came from ADMM, yellow if it came from LM, and white if both

models returned the same estimate or if the cell refers to the scanner’s results.

Patient 1 Patient 2 Patient 3 Patient 4

Scanner

result

9.1323 4.2624 16.2949 10.7012

Right ROI 10.4905 3.8968 16.3604 10.9868

Vasc ROI 10.8184 5.2674 16.9020 10.9755

Edge ROI 8.1741 4.9463 17.1849 9.9708

Left ROI 11.0596 4.6689 14.1895 18.1106
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Maps of estimates of T2∗ obtained with LM

Fig. 14: Parameter T2∗ for the four patients obtained using LM. Confirming previous observations, patient 2 shows the lowest T2∗ values. The

maps appear visually similar to those obtained earlier. As also described by Table 3, LM generally shows a worse performance than ADMM.

Here we used starting point [100,0.2], Figure 25 shows the results obtained with a different initial point.

Maps of estimates of a obtained with LM

Fig. 15: Parameter a for the four patients obtained with LM. Also in this case, patient 1 displays the highest intercept.

Total Computational Time

Fig. 16: Total computational time (in seconds) for

obtaining all the parameter estimates. The simpler

approach proposed by LM offers an increase in efficiency.

Conclusions and future work

Thalassemias represent a major challenge for public health and

well-being. The treatment with regular transfusions causes iron

overload and therefore needs to be complemented by chelation therapy.

Quantification of the amount of surplus iron is crucial for a correct

initiation and monitoring of this treatment. The current gold standard

for this quantification is liver biopsy, which however presents several

disadvantages, including its invasiveness. In the study presented

here, no biopsy sample was considered. Therefore, we were not

equipped with any true ground truth of LIC for the patient images.

Consequently, after carefully explaining the steps of ADMM, we

begun our experiments on phantom data, that could be created

arbitrarily choosing ground truth values. The estimates obtained in

these experiments were promising for both ADMM and LM. The main

difference between the two methods emerged in the presence of high

noise, where only ADMM appeared to maintain its performance, due

to its inclusion of regularisation terms. Subsequently, we considered

the patient images, obtaining parameter maps of a and T2∗. For

both ADMM and LM, the resulting T2∗ values of the second patient

appeared particularly low, providing strong evidence for a severe

condition of iron overload. The final experiment focused on ROIs to

compute the mean parameter estimate of the corresponding pixels. The

results returned by the scanner were used as a proxy for a ground truth.

The experiments revealed how the heterogeneous iron deposit pattern

in the liver can drastically influence the results and their accuracy.

Indeed, the estimates were subject to significant fluctuations across

ROIs, with the ”left” ROI leading to the worst predictions. In terms of

absolute error, ADMM demonstrated superior performance compared

to LM, and its advantages were probably again related to the inclusion

of regularisation terms. On the other hand, LM has proven its utility

in increasing estimation efficiency.

This study presents some limitations. First of all, the reduced sample

size does not provide us with solid guarantees on the generalisation of

our results. Furthermore, while we only employed a single exponential

model, the application of other alternatives may also yield interesting

results. In addition, the lack of a true ground truth mines the validity of

our interpretations on the quality of the estimates. Moreover, as noted
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during the experiments, the arbitrary selection of ROIs is a delicate

passage of the pipeline for estimating iron overload. The subjectivity

introduced by this step may compromise the generisability of the

conclusions.

Therefore, further studies could begin by considering a larger sample

size, or a richer set of models. Then, developing a method for

automatically optimising the choice of the ROIs would represent an

important milestone in the field. This could reduce the dependence

of results on the human operator, and could be particularly beneficial

in the diagnosis of borderline patients. Similarly, methods aimed at

correcting the estimates for the presence of fat hold the promise to

enhance the reliability of results. Moreover, the studies presented in

this paper may be complemented by retrieving a calibration curve,

offering a direct relation between T2∗ and LIC. Furthermore, the

hyperparameters of ADMM (such as the learning rate for r and the

constants multiplying the Total Variation terms) could be tuned for

additional performance improvements (Figure 21 and Table 4). While

Total Variation is a standard choice of regularisation in this field,

similar alternatives such as Laplacian regularisation are probably worth

exploring, in order to observe the effects on noise handling. In addition,

machine learning has delivered impressive breakthroughs in the field

of medical MRI, and investigating approaches on the same lines as

Positano et al. [36] may offer insightful observations. For example,

Positano et al. describe the need of employing data augmentation

for their models. However, this represents an expensive operation.

Designing an architecture able to generalise over scanner parameters

without the need of data augmentation could lead to improvements in

both efficiency and accuracy. In addition, because of the complexity of

CNNs, works focusing on enhancing their interpretability may generate

fruitful insights. Finally, we notice that the typical noise distribution

for these tasks is Rician, and this can be taken into account by

introducing ad-hoc initial denoising layers in the CNNs, similar to what

Sedlar et al. have already proposed for analyses of brain dMRI [41].
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Appendix

Additional Figures and Tables

Phantom Images. Signal Decay as a Function of TE

Fig. 17: Decay of the signal in phantom images as a function of TE.
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Results for a (σ2 = 100). Method: ADMM

Fig. 18: The interpretation of the figures is similar to before (Figure 5), but we have added more noise (σ2=100) to better highlight the results.

Results for T2∗ (σ2 = 100). Method: ADMM

Fig. 19: The interpretation of the figures is similar to before (Figure 7), but we have added more noise (σ2=100) to better highlight the results.

Results for a (σ2 = 100) and high regularisation. Method: ADMM

Fig. 20: Results for the estimation of T2∗ using ADMM on phantom images with severe noise (σ2 = 100) and high regularisation (λ1 and λ2

equal to 100).
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Estimates with λ1 and λ2 equal to 10. Method: ADMM

Fig. 21: Parameter maps obtained with ADMM with higher regularisation (λ1 = 10, λ2 = 10). We observe smoother regions, less impacted by

noise.

Results for a. Method: LM

Fig. 22: Results for a obtained using LM. Visually, the estimates seem once again close to the ground truths.

Results for T2∗. Method: LM

Fig. 23: Results for T2∗ obtained using LM. Visually, the estimates seem once again close to the ground truths.
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ROIs at different severities of iron overload

Fig. 24: Example of ROIs for a patient with light (left) and severe (right) iron overload. During the experiments our attempt was to consider

ROIs similar to these ones. Image taken from [22]

T2∗ estimates with new starting point. Method: LM

Fig. 25: T2∗ estimates obtained with LM and starting point [50,0.05]. The different starting point leads to observable differences in the maps.
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Table 4. Comparison of scanner results and mean estimated T2∗ obtained by ADMM with λ1 = 10 and λ2 = 10 on real images. Green cells indicate estimates

that have improved with respect to those obtained with the default hyperparameters (λ1 = 1e-5 and λ2 = 1e-5). This is the case for 10 out of 16 cells.

Patient 1 Patient 2 Patient 3 Patient 4

Scanner result 9.1323 4.2624 16.2949 10.7012

Right ROI 10.4761 4.0115 16.6239 11.0310

Vasc ROI 10.6564 5.2298 16.7156 11.0000

Edge ROI 8.1844 4.8931 17.1673 9.9374

Left ROI 10.9702 4.6956 14.2112 18.1914

Table 5. Effect of η in the Levenberg–Marquardt update

Large η (Gradient Descent behavior) Small η (Gauss–Newton behavior)

a(k+1)
n = a(k)

n −
1

η

∂LLM

∂an

r(k+1)
n = r(k)

n −
1

η

∂LLM

∂rn

a(k+1)
n = a(k)

n −
(
∂2LLM

∂a2
n

)−1 ∂LLM

∂an

r(k+1)
n = r(k)

n −
(
∂2LLM

∂r2n

)−1 ∂LLM

∂rn

Table 6. Comparison of scanner results and mean estimated T2∗ with LM on real images. The intensity of the red colour of a cell is proportional to the amount of

the total absolute error caused by the estimate in that cell.

Patient 1 Patient 2 Patient 3 Patient 4

Scanner result 9.1323 4.2624 16.2949 10.7012

Right ROI 10.4905 3.8744 16.3613 10.9869

Vasc ROI 10.8185 5.2674 16.9149 10.9766

Edge ROI 8.1739 4.9463 17.1872 9.9708

Left ROI 11.0596 4.6689 14.1895 18.1107
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